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Objectives

Context: First price auctions have been largely
adopted in the field of programmatic advertis-
ing, where they have progressively replaced second-
price auctions.
Objective: designing an online learning algo-
rithm for bidding in first price auctions, in
the case where the buyer plays against a stationary
stochastic environment.

Model

For t = 1 . . . T , the bidder of interest

1 Submits her bid Bt for the item of unknown
value Vt. {Vt}t≥1 i.i.d in [0, 1] ;

2 Observes the maximum of the other bids : Mt.
{Mt}t≥1 is i.i.d in [0, 1] (with cdf F ).

3 If Mt ≤ Bt , she observes and receives Vt,
and pays Bt. Otherwise, she loses the auction
and does not observe Vt.

The (pseudo-) regret is defined by

Rv,F
T := T max

b∈[0,1]
Uv,F (b)−

T∑
t=1

E[Uv,F (Bt)].

where the utility is

Uv,F (b) := E
[
(Vt − b)1{Mt ≤ b}

]
= (v − b)F (b).

Some Intuition

Exploration/Exploitation Trade-Off where
Exploitation consists in bidding close to a certain
optimum and Exploitation consists in bidding high
enough (bidding 1 means observing everything).

Properties of First Price Auctions

Difficulties: Unlike in second price auctions, the
maximizer of the utility is not available in close
form. More generally, there could be multiple
maximizers, or arbitrarily close maxima. Thus,
we define

b∗v,F = max
{

arg max
b∈[0,1]

Uv,f(b)
}
.

General Lower Bound

Any strategy, whether it assumes knowledge of F
or not, must satisfy

lim inf
T→∞

maxv∈[0,1],F∈cdf R
v,F
T√

T
≥ 1

64
,

Regular Case. Under general regularity
assumptions on F (see paper):

• there exists one unique maximizer b∗v,F of the utility

•ψF : v 7→ b∗v,F is Lipschitz continuous with a
Lipschitz constant 1.

• there exist two constants c and C such that
∀b ∈ [b∗v,F −∆, b∗v,F + ∆],

c(b∗v,F − b)2 ≤ Uv,F (b∗v,F )−Uv,F (b) ≤ C(b∗v,F − b)2

Estimation method: We estimate Uv,F thanks to
the average of Vt and to the empirical c.d.f.

V̂t :=
1

Nt

t−1∑
s=1

Vs1{Ms ≤ Bs},

F̂t(b) :=
1

t− 1

t−1∑
s=1

1{Ms < b}.

The Algorithm and its Analysis

UCBid1+ Algorithm
Initially set B1 = 1;
for t ≥ 2, do

Bt = max
{

arg max
b∈[0,1]

(V̂t + εt − b)F̂t(b)
}
,

where εt :=
√
γ log(t− 1)/2Nt.

end

Regret Upper Bound

In all generality, when γ > 2

Rv,F
T ≤ Cv,F

√
γv

Uv,F (b∗v,F )

√
T log T + O(log T ),

While in the regular case

Rv,F
T ≤ O

(
T1/3+ε

)
,

for any ε > 0

The proof relies on a new local concentration
inequality on F , more efficient than DKW locally.
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Remark: We also study the setting in which one
knows F in advance. Then one can directly resort
to F instead of F̂ , which leads to a significantly
reduced regret (O(log2 T )) in the regular case.

Simulations

With Mt ∼ Beta(1, 6) and v = 1/2
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Real Data Experiments

Real-world bidding dataset: 56607 bids that were
made on a specific placement on Adverline’s inven-
tory on auctions that Numberly participated to, for
a specific campaign.

0 2000 4000 6000 8000 10000

Time

0

25

50

75

100

125

150

175

200

R
eg

re
t

UCBid1+

UCB discrete step = 0.1

Winexp step = 0.01

Acknowledgements

We would like to thank Adverline for accepting to provide us
with the bidding data on their inventories and Xandr for mak-
ing this data transaction possible. Aurélien Garivier acknowl-
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