Fast Rate Learning in Stochastic First Price Bidding

IDIENS, PSL, INRIA, 1000mercis Group,

Objectives

Context: First price auctions have been largely
adopted in the field of programmatic advertis-
ing. where they have progressively replaced second-
price auctions.

Objective: designing an online learning algo-
rithm for bidding in first price auctions, in
the case where the buyer plays against a stationary
stochastic environment.

Model

Fort =1...7T, the bidder of interest

o Submits her bid B; for the item of unknown
value V;. {V;};4>11i.din [0,1] ;

® Observes the maximum of the other bids : M,.
{M;}i>q is ii.d in [0, 1] (with cdf F).

olt M; < B, , she observes and receives V},
and pays B;. Otherwise, she loses the auction
and does not observe V;.
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The (pseudo—) regret is defined by
T

Ry =T max U, p(b) — » E[U,r(B)].

be|0,1] -

where the utility 1s
Uy (b) :=E[(V; = b)1{M; < b}]

— (v —b)F(b).

Some Intuition

Exploration /Exploitation Trade-Off where
Exploitation consists in bidding close to a certain
optimum and Exploitation consists in bidding high
enough (bidding 1 means observing everything).
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Properties of First Price Auctions

Difficulties: Unlike in second price auctions, the
maximizer of the utility is not available in close
form. More generally, there could be multiple
maximizers, or arbitrarily close maxima. Thus,

we define
» = max { argmax U, ;(b) }.
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General Lower Bound

Any strategy, whether it assumes knowledge of F’
or not, must satisty
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Regular Case. Under general regularity
assumptions on F' (see paper):
® there exists one unique maximizer 0 r of the utility

®Yp v b pis Lipschitz continuous with a
Lipschitz constant 1.

e there exist two constants ¢ and C such that

Vb € (b7 p— A g+ A,
c(by p — b) < Uy r(b, p) = Upr(b) < O} p —b)°

Estimation method: We estimate U, i thanks to
the average of V; and to the empirical c.d.f.
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The Algorithm and its Analysis

UCBid14+ Algorithm

Initially set By = 1;
for ¢t > 2, do

B; = max { arg max(V; + € — b)ﬁt(b)},
be|0,1]

where ¢ := /v log(t — 1)/2N,.

end

Regret Upper Bound

In all generality, when ~v > 2

R%F < C’U,F\/

While in the regular case

R%F § O(r:[wl/3—|—€)7

for any € > 0

The proof relies on a new local concentration
inequality on F', more efficient than DKW locally.
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Remark: We also study the setting in which one

knows F' in advance. Then one can directly resort

to F' instead of F', which leads to a significantly
reduced regret (O(log”T')) in the regular case.

v TlogT + O(logT),
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Simulations

With M; ~ Beta(1,6) and v = 1/2
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Real Data Experiments

Real-world bidding dataset: 56607 bids that were
made on a specific placement on Adverline’s inven-
tory on auctions that Numberly participated to, for
a specific campaign.
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