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CONTEXT AND MODEL DEFINITION



SECOND PRICE AUCTIONS IN REAL TIME BIDDING

Context: First price auctions have been largely adopted in the field of
programmatic advertising, where they have progressively replaced
second-price auctions.

Unlike second price auctions, first price auctions are noticeably NOT truthful.
There does not exist a close form for the optimal bid in first price auctions

Objective: designing an online learning algorithm for bidding in repeated
first price auctions, in the case where the buyer plays against a stationary
stochastic environment.
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STOCHASTIC SETTING

Fort=1...T, the bidder of interest

1. Submits her bid B; for the item of
unknown value V. {Vi}i>1 iid in
[0,1] of expectation v;

2. Observes the maximum of the other
bids : M. {Mt}t21 isiidin [0,1]
(with cdf F);
3. If My < B, she observes and
receives V¢, and pays B:. Otherwise, Bf =58

she loses the auction and does not
observe V;.

5$

receive V;
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STOCHASTIC SETTING

Utility The utility is Uy(b) = E[(V: — b)L{b > M:}] = (v — b)F(b).

Regret

.
ri= max Z Us(b ; E[U(Br)].

We study two different settings:

- Known F. Fis known in advance. This setting is close to the second-price
setting, since v is the only parameter to be estimated. However, the utility
function can be far more complex in first price auctions.

- Unknown F. Fis unknown, and needs to be estimated. This setting bears
similarities with the posted price one.
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SOME INTUITION ON THE PROBLEM

Exploration/Exploitation Trade-Off where Exploitation consists in bidding
close to a certain b* (not necessarily unique) and Exploration consists in
bidding high enough (bidding 1 means observing everything).

— F(b)

— U(hb)
Example: Fbn)
M; uniform, Fiv)
Vi ~ Bernoulli(v). o
Uv,r(b) = U(by) = Uéb;}
v —(v/2 = b).

I 1
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PROPERTIES OF FIRST PRICE AUCTIONS



DIFFICULTIES

Unlike in second price auctions, the maximizer of the utility is not available

in close form. More generally, there could be multiple maximizers, or

arbitrarily close maxima. Thus, we define | by r = max { argmax U, s(b) }.
bel0,1]

— F(b)

Fim)H —— U, p(b)

U, r(mo)
Uv,F(ml)

F(my) 0 <
Us.r(mo) |
Usr(m) e

mo m v
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FIRST PRICE AUCTIONS ARE HARD

Theorem

Let C denote the class of cumulative distribution functions on [0,1]. Any
strategy, whether it assumes knowledge of F or not, must satisfy
maXVE[O"]]’Fec R;’F 1

. 1
lim inf JT = o4
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SOME ASSUMPTIONS CAN ALLEVIATE THE AFOREMENTIONED PROBLEMS

Theorem
Under general regularity assumptions on F (see paper):

- there exists one unique maximizer by ¢ of the utility
- F 1 V= by g is Lipschitz continuous with a Lipschitz constant 1.
- there exist two constants c and C such that Vb € [by r — A, by r + A],

(b — b)” < Uvr(b ) — Uy r(b) < C(byr — b)?

- F(byf) can not be arbitrarily small

These assumptions include large classes of distributions (like the majority of
Beta distributions)

9/22



KNOWN BID DISTRIBUTION




KNOWN BID DISTRIBUTION

Estimation method:

We estimate U, r thanks to the average V;
1 t—1
= — 1{M Vs.
o L <o

Algorithm (UCBid1)
Initially set By = 1 and, for t > 2, bid according to

B: = max { arg max(Vt +e— b)F(b)}.
befo,1]

where e := /v log(t — 1)/2Ns.
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KNOWN BID DISTRIBUTION

Theorem
When ~ > 1, the regret of UCBid1 is upper-bounded as

vF
Ry _F(b log
While if F is regular then
_2
v < A8 062(T) 4+ O(log T).
T—F(bF)B g() (g)

where 8 and B are constants depending only on F.

(+ parametric lower bound confirms that you can not do much better when
being optimistic)
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UNKNOWN BID DISTRIBUTION




UNKNOWN BID DISTRIBUTION : A NON OPTIMISTIC STRATEGY

Estimation method:

We estimate U, r thanks to V; and to the empirical c.d.f.
1 t—1
Fu(b) == — ; 1{Ms < b}.

Intuition: We do not add any optimistic bonus to the estimate F;: it is not
necessary to be optimistic about F since the observation M; drawn according
to Fis observed at each time step whatever the bid submitted.

Algorithm (UCBid1+)
Submit a bid equal to 1 in the first round, then bid:

B: = max{arg max(V; + e — b)Fi(b)},
befo,]
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REGRET UPPER BOUND

Theorem
In all generality, when ~ > 2

R?F < Cur /U F(b \/TlogT—l— O(logT),
V.

While in the regular case
R;’F < O(T1/3+6),

forany e > 0.
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ONE KEY ELEMENT OF THE PROOF

Lemma
Local concentration inequality For any a,b € [0,1), if F is increasing,

sup. IFi(x) — F(x) — (Fi(a) — F(a))]

_ eVt
Z(F(b) F(a)) |°g <77 /Z(F(b)fF(U))> n IOg(iz(F(b)jF(a)nz)

<
- t 6t

with probability 1 — .

cdf
1 Empirical cdf

1 — car
1 Empirical cdf
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EXPERIMENTS




2 INSTANCES
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Figure: Two choices of F; associated

0.0

0.2 0.4

0.6

0.8 1.0

utilities forv=1/2.




KNOWN BID DISTRIBUTION, 2 INSTANCES
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UNKNOWN BID DISTRIBUTION, INSTANCE 2
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UNKNOWN F, REAL DATA EXPERIMENT

Data from one advertising campaign
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