FAST RATE LEARNING IN STOCHASTIC FIRST PRICE BIDDING

joint work with Olivier Cappé and Aurélien Garivier

numberly

CONTEXT AND MODEL DEFINITION

Context: First price auctions have been largely adopted in the field of programmatic advertising, where they have progressively replaced second-price auctions.
Unlike second price auctions, first price auctions are noticeably NOT truthful.
There does not exist a close form for the optimal bid in first price auctions Objective: designing an online learning algorithm for bidding in repeated first price auctions, in the case where the buyer plays against a stationary stochastic environment.

Stochastic Setting

For $t=1 \ldots T$, the bidder of interest

1. Submits her bid B_{t} for the item of unknown value V_{t}. $\left\{V_{t}\right\}_{t \geq 1}$ i.i.d in $[0,1]$ of expectation v;
2. Observes the maximum of the other bids: $M_{t} .\left\{M_{t}\right\}_{t \geq 1}$ is i.i.d in $[0,1]$ (with cdf F);
3. If $M_{t} \leq B_{t}$, she observes and receives V_{t}, and pays B_{t}. Otherwise,
 she loses the auction and does not observe V_{t}.

Utility The utility is $U_{t}(b)=\mathbb{E}\left[\left(V_{t}-b\right) \mathbb{1}\left\{b \geq M_{t}\right\}\right]=(v-b) F(b)$.

Regret

$$
R_{T}:=\max _{b \in[0,1]} \sum_{t=1}^{T} U_{t}(b)-\sum_{t=1}^{T} \mathbb{E}\left[U_{t}\left(B_{t}\right)\right] .
$$

We study two different settings:
Known F. F is known in advance. This setting is close to the second-price setting, since v is the only parameter to be estimated. However, the utility function can be far more complex in first price auctions.
Unknown F. F is unknown, and needs to be estimated. This setting bears similarities with the posted price one.

SOME INTUITION ON THE PROBLEM

Exploration/Exploitation Trade-Off where Exploitation consists in bidding close to a certain b^{*} (not necessarily unique) and Exploration consists in bidding high enough (bidding 1 means observing everything).

Example:

M_{t} uniform,
$V_{t} \sim$ Bernoulli (v).
$U_{V, F}(b)=$
$\frac{1}{4} v^{2}-(v / 2-b)^{2}$.

PROPERTIES OF FIRST PRICE AUCTIONS

DIFFICULTIES

Unlike in second price auctions, the maximizer of the utility is not available in close form. More generally, there could be multiple maximizers, or arbitrarily close maxima. Thus, we define $b_{v, F}^{*}=\max \left\{\arg \max U_{v, f}(b)\right\}$. $b \in[0,1]$

FIRST PRICE AUCTIONS ARE HARD

Theorem

Let \mathcal{C} denote the class of cumulative distribution functions on $[0,1]$. Any strategy, whether it assumes knowledge of F or not, must satisfy

$$
\liminf _{T \rightarrow \infty} \frac{\max _{v \in[0,1], F \in \mathcal{C}} R_{T}^{v, F}}{\sqrt{T}} \geq \frac{1}{64}
$$

Theorem

Under general regularity assumptions on F (see paper):

- there exists one unique maximizer $b_{v, F}^{*}$ of the utility
- $\psi_{F}: v \mapsto b_{v, F}^{*}$ is Lipschitz continuous with a Lipschitz constant 1.
- there exist two constants c and C such that $\forall b \in\left[b_{v, F}^{*}-\Delta, b_{v, F}^{*}+\Delta\right]$,

$$
c\left(b_{v, F}^{*}-b\right)^{2} \leq U_{v, F}\left(b_{v, F}^{*}\right)-U_{v, F}(b) \leq C\left(b_{v, F}^{*}-b\right)^{2}
$$

$F\left(b_{v, F}^{*}\right)$ can not be arbitrarily small
These assumptions include large classes of distributions (like the majority of Beta distributions)

KNOWN BID DISTRIBUTION

Known Bid Distribution

Estimation method:

We estimate $U_{V, F}$ thanks to the average \hat{V}_{t}

$$
\hat{V}_{t}:=\frac{1}{t-1} \sum_{s=1}^{t-1} \mathbb{1}\left\{M_{s}<b\right\} V_{s} .
$$

Algorithm (UCBid1)

Initially set $B_{1}=1$ and, for $t \geq 2$, bid according to

$$
B_{t}=\max \left\{\underset{b \in[0,1]}{\arg \max }\left(\hat{V}_{t}+\epsilon_{t}-b\right) F(b)\right\} .
$$

where $\epsilon_{t}:=\sqrt{\gamma \log (t-1) / 2 N_{t}}$.

Known Bid Distribution

Theorem

When $\gamma>1$, the regret of UCBid1 is upper-bounded as

$$
R_{T}^{v, F} \leq \frac{\sqrt{2 \gamma}}{F\left(b_{v, F}^{*}\right)} \sqrt{\log T} \sqrt{T}+O(\log T)
$$

While if F is regular then

$$
R_{T}^{V, F} \leq \frac{\gamma \lambda \bar{\beta}^{2}}{F\left(b_{v, F}^{*}\right) \beta} \log ^{2}(T)+O(\log T) .
$$

where β and $\bar{\beta}$ are constants depending only on F.
(+ parametric lower bound confirms that you can not do much better when being optimistic)

UNKNOWN BID DISTRIBUTION

Estimation method:

We estimate $U_{\mathrm{V}, \mathrm{F}}$ thanks to \hat{V}_{t} and to the empirical c.d.f.

$$
\hat{F}_{t}(b):=\frac{1}{t-1} \sum_{s=1}^{t-1} \mathbb{1}\left\{M_{s}<b\right\} .
$$

Intuition: We do not add any optimistic bonus to the estimate \hat{F}_{t} : it is not necessary to be optimistic about F since the observation M_{t} drawn according to F is observed at each time step whatever the bid submitted.
Algorithm (UCBid1+)
Submit a bid equal to 1 in the first round, then bid:

$$
B_{t}=\max \left\{\underset{b \in[0,1]}{\arg \max }\left(\bar{V}_{t}+\epsilon_{t}-b\right) \hat{F}_{t}(b)\right\}
$$

Regret Upper Bound

Theorem
In all generality, when $\gamma>2$

$$
R_{T}^{V, F} \leq C_{V, F} \sqrt{\frac{\gamma V}{U_{V, F}\left(b_{v, F}^{*}\right)}} \sqrt{T \log T}+O(\log T)
$$

While in the regular case

$$
R_{T}^{v, F} \leq O\left(T^{1 / 3+\epsilon}\right)
$$

for any $\epsilon>0$.

ONE KEY ELEMENT OF THE PROOF

Lemma

Local concentration inequality For any $a, b \in[0,1]$, if F is increasing,

$$
\begin{aligned}
\sup _{a \leq x \leq b} \mid \hat{F}_{t}(x)- & F(x)-\left(\hat{F}_{t}(a)-F(a)\right) \mid \\
& \leq \sqrt{\frac{2(F(b)-F(a)) \log \left(\frac{e \sqrt{t}}{\eta \sqrt{2(F(b)-F(a))}}\right)}{t}+\frac{\log \left(\frac{t}{2\left(F(b)-F(a) \eta^{2}\right.}\right)}{6 t}}
\end{aligned}
$$

with probability $1-\eta$.

EXPERIMENTS

2 INSTANCES

Figure: Two choices of F; associated utilities for $v=1 / 2$.

Known Bid Distribution, 2 instances

Unknown Bid DIstribution, instance 2

Unknown F, Real Data Experiment

Data from one advertising campaign

Thanks

