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Motivation and Objective

Motivation: many real-world applications (recommendation, health
monitoring) require to provide a personalized service to multiple different
clients.

Central idea: communicating information (models, privatized gradients)
between agents in a decentralized fashion along the training process.

Informal objective: designing an algorithm with small multitask regret when
neighbors in the communication network have similar tasks.

Relevant related works: cooperative online learning [Cesa-Bianchi et al.,
2020], multitask online learning [Cesa-Bianchi et al., 2021], distributed online
optimization [Hosseini et al., 2013].
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Model

N agents, organized in communication network described by an undirected
graph G. A hidden sequence of convex loss functions `1, `2, . . . chosen
adversarially. For t = 1, 2, . . .

1. agent it ∈ [N] is activated

2. it may fetch information from its neighbors

3. it predicts xt ∈ X

4. it pays `t(xt) and observes gt ∈ ∂`t(xt)

5. it may send information to its neighbors

We aim at minimizing for any comparator U ∈ U and horizon T the multitask
regret

RT(U) =
N∑
i=1

∑
t : it=i

(
`t
(
xt
)
− `t

(
[U]i:

))
.
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Algorithm
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Why this (meta-)algorithm ?

Lemma
The regret of COOL-CN satisfies

RT(U) ≤
N∑
j=1

Rclique-jT
(
U(j)) .

where Rclique-jT is the regret suffered by AlgoClique on the linear losses
〈wit j gt, ·〉 over the rounds t ≤ T such that it ∈ Nj, and U(j) contains the rows
Ui: for i ∈ Nj.
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What choice for Algoclique?

A valid choice of AlgoClique is MT-FTRL Cesa-Bianchi et al. [2021], in its
variance adaptive version. It is an algorithm designed for the case without
communication constraints (i.e., G is a clique), which satisfies

Rclique-jT
(
U(j)) = Õ

(√
1+ σ2j (Nj − 1)

√
T
)
,

where σ2j =
1

2Nj(Nj−1)
∑

i,i′∈Nj

∥∥[U]i: − Ui′:
∥∥2
2 is a measure of the local variance.
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Regret guarantees (1)

Upper bounds for adversarial activations.

Theorem
For general weights wij we have

RT(U)
Õ
=

N∑
j=1

max
i∈Nj

wij
√
1+ σ2j (Nj − 1)

√∑
i∈Nj

Ti .

Setting wij = I {j ∈ Ni} /Ni, it becomes

RT(U)
Õ
=

√
1+ σ2max(Nmax − 1)

√
NNmaxT
N2min

,

that particularizes well, e.g., for ρ-regular graphs

RT(U)
Õ
=

√
1+ ρσ2max

√
NT
ρ+ 1 .
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Regret guarantees (2)

Upper bounds for stochastic activations.

Theorem
Using appropriate wij, with α(G) the independence number of G, we have

E[RT(U)]
Õ
=

√
1+ σ2max(Nmax − 1)

√
α(G) T .
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Lower bounds for adversarial activations.

Theorem
There exists a sequence of activations and gradients such that for any
algorithm

RT ≥
1
3 max

(√
1+ σ2(N− 1),

√
α2(G)

)√
T ,

where α2(G) is the double independence number.

Theorem
For any even number ρ, there exists a ρ-regular graph and a sequence of
activations and gradients such that for any algorithm

RT ≥
1
5

√
1+ ρ σ2min

√
NT
ρ

.
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Comment on Privacy

With AlgoClique set as MT-FTRL, it is possible to make the algorithm
ε-differentially private, while preserving regret guarantees.

Notion of ε- DP:
P[mi

1, . . .mi
T |`1, i1 . . . `T , iT ]

P[mi
1, . . .mi

T |`′1, i1 . . . `′T , iT ]
≤ eε, ∀i

where mi
t denotes the message sent by i to the network at time t, and `1...T

and `′1...T differ by one element.

We exhibit a cut-off privacy value ε, below which communicating is useless.
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Possible future works: a unifying framework for ST-COOL, MT-COOL, DOL

A unifying framework for MT-COOL, ST-COOL, DOL

Regret Setting

MT-
COOL RT(U) =

N∑
i=1

∑
t : it=i

(
`t
(
x(i)t

)
− `t

(
[U]i:

))I One activation at a time.
I Communication of

∙ models
∙ gradients

ST-
COOL RT(u) =

N∑
i=1

∑
t : it=i

(
`t
(
x(i)t

)
− `t

(
u
)) I One or more activations at a time.

I Communication of gradients

Decen-
tralized
OL

RT(u) =
N∑
i=1

T∑
t=1

(
`i,t

(
xt
)
− `i,t

(
u
)) I All agents are activated.

I Communication of models
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Possible future works: different communication models (2)

I Considering communication delays.
Agents can send gradients received from their neighbors to their other
neighbors, but this induces a delay in the information on agent j that
agent i holds.

This delay has a complicated form !
I Considering communication constraints.

∙ Agents can only send messages every K rounds.
∙ Alternatively: agents have a total communication budget
∙ What impact on the regret?
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Possible future works: different privacy notions (3)

Considering different forms of differential privacy.

I The common differential privacy measure in online learning is with
respect to one individual loss function (equivalent of one data point).

I In stochastic activations, every agent will be activated qiT times, so
requiring ”user-level” privacy will harm the regret.

I Is there an intermediary yet reachable objective ?
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