MULTITASK COOPERATIVE ONLINE LEARNING

Juliette Achddou

Nicolò Cesa-Bianchi

Pierre Laforgue

Funded by the European Union

Motivation: many real-world applications (recommendation, health monitoring) require to provide a personalized service to multiple different clients.

Central idea: communicating information (models, privatized gradients) between agents in a decentralized fashion along the training process.

Informal objective: designing an algorithm with small multitask regret when neighbors in the communication network have similar tasks.

Relevant related works: cooperative online learning [Cesa-Bianchi et al., 2020], multitask online learning [Cesa-Bianchi et al., 2021], distributed online optimization [Hosseini et al., 2013].

N agents, organized in communication network described by an undirected graph *G*. A hidden sequence of convex loss functions ℓ_1, ℓ_2, \ldots chosen adversarially. For $t = 1, 2, \ldots$

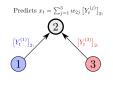
- 1. agent $i_t \in [N]$ is activated
- 2. i_t may *fetch* information from its neighbors
- 3. i_t predicts $x_t \in \mathcal{X}$
- 4. i_t pays $\ell_t(x_t)$ and observes $g_t \in \partial \ell_t(x_t)$
- 5. i_t may send information to its neighbors

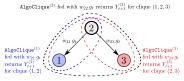
We aim at minimizing for any comparator $U \in \mathcal{U}$ and horizon T the **multitask** regret

$$\mathsf{R}_{\mathsf{T}}(U) = \sum_{i=1}^{N} \sum_{t: i_t=i} \left(\ell_t(x_t) - \ell_t([U]_{i:}) \right).$$

Algorithm 2 COOL-CN

 $\label{eq:rest} \begin{array}{c} \textbf{Requires: Base algorithm AlgoClique, right stochastic} \\ matrix W \\ \textbf{for } t = 1, 2, \dots \textbf{do} \\ \\ \textbf{Active agent } i_t: \\ fetches \left[Y_t^{(j)}\right]_{i_t}; from each j \in \mathcal{N}_{i_t} \\ predicts x_t = \sum_{j \in \mathcal{N}_{i_t}} w_{i,j} \left[Y_t^{(j)}\right]_{i_t}: \\ pays \, \ell_t(x_t) \text{ and observes } g_t \in \partial \ell_t(x_t) \\ sends \left(i_t, w_{i,j} \, g_t\right) \text{ to each neighbor } j \in \mathcal{N}_{i_t} \\ \textbf{for } j \in \mathcal{N}_{i_t} \textbf{ do} \\ \\ \\ \textbf{Agent } j \text{ feeds the linear loss } \langle w_{i_tj} \, g_t, \cdot \rangle \text{ to their} \\ \\ \text{local instance of AlgoClique, and obtains } Y_{t+1}^{(j)} \end{array}$





Lemma The regret of COOL-CN satisfies

$$R_T(U) \leq \sum_{j=1}^N R_T^{\text{clique-}j}(U^{(j)}).$$

where $R_T^{\text{clique-}_j}$ is the regret suffered by **AlgoClique** on the linear losses $\langle w_{i_t j} g_t, \cdot \rangle$ over the rounds $t \leq T$ such that $i_t \in \mathcal{N}_j$, and $U^{(j)}$ contains the rows U_{i_t} for $i \in \mathcal{N}_j$.

A valid choice of **AlgoClique** is **MT-FTRL** Cesa-Bianchi et al. [2021], in its variance adaptive version. It is an algorithm designed for the case without communication constraints (i.e., *G* is a clique), which satisfies

$$R_{T}^{\text{clique-}j}(U^{(j)}) = \tilde{\mathcal{O}}\left(\sqrt{1 + \sigma_{j}^{2}(N_{j} - 1)}\sqrt{T}\right) \,,$$

where $\sigma_j^2 = \frac{1}{2N_j(N_j-1)} \sum_{i,i' \in \mathcal{N}_j} \|[U]_{i:} - U_{i':}\|_2^2$ is a measure of the local variance.

Upper bounds for adversarial activations.

Theorem

For general weights w_{ij} we have

$$R_{T}(U) \stackrel{\tilde{\mathcal{O}}}{=} \sum_{j=1}^{N} \max_{i \in \mathcal{N}_{j}} w_{ij} \sqrt{1 + \sigma_{j}^{2}(N_{j} - 1)} \sqrt{\sum_{i \in \mathcal{N}_{j}} T_{i}}.$$

Setting $w_{ij} = \mathbb{I} \{ j \in \mathcal{N}_i \} / N_i$, it becomes

$$R_{T}(U) \stackrel{\tilde{\mathcal{O}}}{=} \sqrt{1 + \sigma_{\max}^{2}(N_{\max} - 1)} \sqrt{\frac{NN_{\max}T}{N_{\min}^{2}}} ,$$

that particularizes well, e.g., for ρ -regular graphs

$$R_T(U) \stackrel{\widetilde{\mathcal{O}}}{=} \sqrt{1 + \rho \sigma_{\max}^2} \sqrt{\frac{NT}{\rho+1}}.$$

Upper bounds for stochastic activations.

Theorem Using appropriate w_{ij} , with $\alpha(G)$ the independence number of G, we have

$$\mathbb{E}[R_{T}(U)] \stackrel{\tilde{\mathcal{O}}}{=} \sqrt{1 + \sigma_{\max}^{2}(N_{\max} - 1)} \sqrt{\alpha(G) T}.$$

Theorem

There exists a sequence of activations and gradients such that for any algorithm

$$R_T \geq \frac{1}{3} \max\left(\sqrt{1 + \sigma^2(N-1)}, \sqrt{\alpha_2(G)}\right) \sqrt{T},$$

where $\alpha_2(G)$ is the double independence number.

Theorem

For any even number ρ , there exists a ρ -regular graph and a sequence of activations and gradients such that for any algorithm

$$\mathsf{R}_T \geq \frac{1}{5}\sqrt{1+\rho\,\sigma_{\min}^2}\sqrt{\frac{NT}{\rho}}\,.$$

With AlgoClique set as MT-FTRL, it is possible to make the algorithm ϵ -differentially private, while preserving regret guarantees.

Notion of ϵ - DP: $\frac{P[m_1^i, \dots, m_T^i | \ell_1, i_1 \dots \ell_T, i_T]}{P[m_1^i, \dots, m_T^i | \ell_1', i_1 \dots \ell_T', i_T]} \le e^{\epsilon}, \ \forall i$

where m_t^i denotes the message sent by *i* to the network at time *t*, and $\ell_{1...T}$ and $\ell'_{1...T}$ differ by one element.

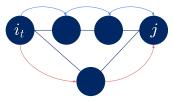
We exhibit a cut-off privacy value ϵ , below which communicating is useless.

Possible future works: a unifying framework for ST-COOL, MT-COOL, DOL

A unifying framework for MT-COOL, ST-COOL, DOL		
	Regret	Setting
MT- COOL	$R_{T}(U) = \sum_{i=1}^{N} \sum_{t: i_{t}=i} \left(\ell_{t}(x_{t}^{(i)}) - \ell_{t}([U]_{i:}) \right)$	 One activation at a time. Communication of models gradients
ST- COOL	$R_{T}(u) = \sum_{i=1}^{N} \sum_{t: i_{t}=i} \left(\ell_{t}(x_{t}^{(i)}) - \ell_{t}(u) \right)$	 One or more activations at a time. Communication of gradients
Decen- tralized OL	$R_{T}(u) = \sum_{i=1}^{N} \sum_{t=1}^{T} \left(\ell_{i,t}(x_{t}) - \ell_{i,t}(u) \right)$	 All agents are activated. Communication of models

Considering communication delays.

Agents can send gradients received from their neighbors to their other neighbors, but this induces a delay in the information on agent *j* that agent *i* holds.



This delay has a complicated form !

Considering communication constraints.

- · Agents can only send messages every K rounds.
- · Alternatively: agents have a total communication budget
- · What impact on the regret?

Considering different forms of differential privacy.

- The common differential privacy measure in online learning is with respect to one individual loss function (equivalent of one data point).
- ► In stochastic activations, every agent will be activated *q_iT* times, so requiring "user-level" privacy will harm the regret.
- ► Is there an intermediary yet reachable objective ?

- N. Cesa-Bianchi, T. Cesari, and C. Monteleoni. Cooperative online learning: Keeping your neighbors updated. In *Algorithmic learning theory*. PMLR, 2020.
- N. Cesa-Bianchi, P. Laforgue, A. Paudice, and M. Pontil. Multitask online mirror descent. *Transactions on Machine Learning Research*, 2021.
- S. Hosseini, A. Chapman, and M. Mesbahi. Online distributed optimization via dual averaging. In *IEEE Conference on Decision and Control*. IEEE, 2013.