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Motivation: many real-world applications (recommendation,
Central idea: communicating information (models, privatized
Informal objective: designing an algorithm with small multitask regret when neighbors in t

Relevant related works: cooperative online learning [1], multitask online learning [2|, distri

N agents, organized in communication network
described by an undirected graph . A hidden
sequence of convex loss functions /1,45, ...
chosen adversarially. For ¢t =1,2,...

. agent i; € [IN] is activated

. 1; may fetch information from its neighbors
. 14 predicts xy € X

. 13 pays f¢(x¢) and observes g; € Ol ()

. 1; may send information to its neighbors

We aim at minimizing for any comparator U € U
and horizon T' the multitask regret

S Y (aen) - 6(0)).
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Why this (meta-)algorithm?

Lemma 1. The regret of COOL-CN satisfies

N
Rr(U) <Y R (g0)).
=1
where R%ique'j is the regret suffered by

AlgoClique on the linear losses (w;,; g¢,-) over
the rounds t < T such that 14 € /\/j, and U

contains the rows U;. fori € N;.

What choice for Algoclique?

A valid choice of AlgoClique is MT-FTRL [2], in
its variance adaptive version. It is an algorithm
designed for the case without communication
constraints (i.e., G is a clique), which satisfies

1)\/T) ,

Reliave-d (77G)) = (\/ 1 40
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Wherea -~ 2N; (N —1) ZZZEN HU U’
measure of the local variance.

Other results and directions

Privacy.

With AlgoClique set as MT-FTRL, it is possible to
make the algorithm e-private, while preserving
regret guarantees. We exhibit a cut-off privacy
value ¢, below which communicating is useless.

Research Directions.

1. Consider communication delays
2. Consider sending different information

3. Consider communication constraints
(e.g., size of the messages sent)

4. Bridging our setting with distributed
online learning with multiple tasks

health monitoring) require to provide a personalized service to multiple different clients.
gradients) between agents in a decentralized fashion along the training process.
he communication network have similar tasks.

buted online optimization [3].

Algorithm

Algorithm 2 COOL-CN

Requires: Base algorithm A1goClique, right stochastic

matrix W
fort=1,2,...do
Active agent 7;:

fetches [Y,7)].

predicts x; = Zjemi Wi, j [Yt(j)} i
pays ¢;(x;) and observes g; € 0¢;(x;)

from each j € N,

sends (i, w;,; g¢) to each neighbor j € N,
for j € N;, do

Agent j feeds the linear loss (w;, i Gt, -} to their
local instance of A1lgoCligue, and obtains Yﬁ)l

Theoretical guarantees

Upper bounds for adversarial activations.

Theorem 2. For general weights w;; we have

Z?;ja,\;cww\/l +0%(N; —

Setting w;; = 1{j € N;} /N;, it becomes

iENj

O N Npaxd
RT(U) g \/1 + U?naX(Nmax o 1)\/ N2 )

min

that particularizes well, e.q., for p-reqular graphs

%) NT
Ry (U) £ ¢1+paﬁm\/ .
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Upper bounds for stochastic activations.

Theorem 3. Using appropriate w;;, with a(G)
the independence number of G, we have

2[Ry (U)] 2 /1T + 02 (Nax — 1)V a(G
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Lower bounds for adversarial activations.

Theorem 4. There exists a sequence of activa-
tions and gradients such that for any algorithm

Rr > %max <\/1 + o?(N — 1), \/ozg(G)) VT

where as(G) is the double independence number.

Theorem 5. For any even number p, there
exists a p-reqular graph and a sequence of activa-
tions and gradients such that for any algorithm
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Sketch of proof. Activations are restricted
to a doubly independent set.
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Check out our video




