a minimax near-optimal algorithm for adaptive rejection sampling

Juliette Achddou, Joseph Lam-Weil, Alexandra Carpentier, Gilles Blanchard March 2019

Numberly Group, Otto Von Guericke University

Context

- Goal: sample independently from a distribution which admits a density *f*.
- \cdot Evaluations of *f* are possible but costly.
- Simple rejection sampling would incur a large number of unused evaluations.

Assumption *f* is positively lower bounded, with bounded (known) support, and (s, H)-Hölder ($0 < s \le 1$):

$$\forall x, y \in [0, 1]^d, |f(x) - f(y)| \le H ||x - y||_{\infty}^s$$

Definitions Let

- \cdot f be the density you wish to sample from. (target density)
- \cdot g be a density that is **easy to sample from**. (proposal density)
- · *M* be a constant such that $Mg \ge f$. (rejection constant)

Algorithm 1: Rejection Sampling Algorithm

S contains independent samples drawn from f. The acceptance rate is $\frac{1}{M}$.

Rejection Sampling

Figure: Illustration of Rejection Sampling

Procedure At each step $t \le n$,

1. $\{(X_1, f(X_1)), \dots, (X_{t-1}, f(X_{t-1}))\}$ are known.

- 1. $\{(X_1, f(X_1)), \dots, (X_{t-1}, f(X_{t-1}))\}$ are known.
- 2. g_t, M_t are chosen.

- 1. $\{(X_1, f(X_1)), \dots, (X_{t-1}, f(X_{t-1}))\}$ are known.
- 2. g_t, M_t are chosen.
- 3. A rejection sampling step is done using (g_t, M_t) . This generates X_t .

- 1. $\{(X_1, f(X_1)), \dots, (X_{t-1}, f(X_{t-1}))\}$ are known.
- 2. g_t, M_t are chosen.
- 3. A rejection sampling step is done using (g_t, M_t) . This generates X_t .
- 4. If X_t is not rejected, it is added to S.

Procedure At each step $t \le n$,

- 1. $\{(X_1, f(X_1)), \dots, (X_{t-1}, f(X_{t-1}))\}$ are known.
- 2. g_t, M_t are chosen.
- 3. A rejection sampling step is done using (g_t, M_t) . This generates X_t .
- 4. If X_t is not rejected, it is added to S.

Definition of the loss $L_n = n - \#S \times \mathbf{1}\{\forall t \le n : f \le M_t g_t\}.$

1. Nearest Neighbor Adaptive Rejection Sampling (NNARS).

- 1. Nearest Neighbor Adaptive Rejection Sampling (NNARS).
- 2. Minimax lower bound.

- 1. Nearest Neighbor Adaptive Rejection Sampling (NNARS).
- 2. Minimax lower bound.
- 3. NNARS is minimax near-optimal.

Let

- \cdot \mathcal{A} be the set of ARS algorithms.
- \mathcal{F}_0 be the set of densities: positively lower bounded, with bounded support, and (s, H)-Hölder ($0 < s \le 1$):

$$\forall x, y \in [0, 1]^d, |f(x) - f(y)| \le H ||x - y||_{\infty}^s$$

Minimax rate

$$\inf_{A\in\mathcal{A}_{f\in\mathcal{F}_0}}\sup_{n}\frac{L_n(A;f)}{n}.$$

Let

- \cdot \mathcal{A} be the set of ARS algorithms.
- \mathcal{F}_0 be the set of densities: positively lower bounded, with bounded support, and (s, H)-Hölder ($0 < s \le 1$):

$$\forall x, y \in [0, 1]^d, |f(x) - f(y)| \le H ||x - y||_{\infty}^s$$

Minimax rate

$$\varphi_n^* = \inf_{A \in \mathcal{A}_{f \in \mathcal{F}_0}} \sup_{n \in \mathcal{F}_0} \frac{L_n(A; f)}{n}.$$

Nearest Neighbor Adaptive Rejection Sampling.

Divide the *n* steps into *K* rounds, where each round *k* contains double the amount of steps than k - 1.

Nearest Neighbor Adaptive Rejection Sampling.

Divide the *n* steps into *K* rounds, where each round *k* contains double the amount of steps than k - 1.

At each round $0 \le k \le K - 1$:

- · Use an estimator \hat{f}_k of f based on the previous evaluations.
- Take $M_{(k+1)}g_{(k+1)} = \hat{f}_k + \hat{r}_k$, where \hat{r}_k is a confidence bound for $|\hat{f}_k f|$.

- we know $\{(X_1, f(X_1)), \dots, (X_{N_k}, f(X_{N_k}))\}$.
- build a uniform grid of $\sim N_k$ cells with side-length $\sim N_k^{-1/d}$.

Let us determine $\hat{f}_k(x)$.

- we know $\{(X_1, f(X_1)), \dots, (X_{N_k}, f(X_{N_k}))\}$.
- · build a uniform grid of ~ N_k cells with side-length ~ $N_k^{-1/d}$.

Let us determine $\hat{f}_k(x)$.

1. x is in the *l*-th cell.

- we know $\{(X_1, f(X_1)), \ldots, (X_{N_k}, f(X_{N_k}))\}.$
- · build a uniform grid of ~ N_k cells with side-length ~ $N_k^{-1/d}$.

Let us determine $\hat{f}_k(x)$.

- 1. x is in the *l*-th cell.
- 2. Let X_i be the nearest neighbor of the center of the *l*-th cell.

- we know $\{(X_1, f(X_1)), \ldots, (X_{N_k}, f(X_{N_k}))\}.$
- · build a uniform grid of ~ N_k cells with side-length ~ $N_k^{-1/d}$.

Let us determine $\hat{f}_k(x)$.

- 1. x is in the *l*-th cell.
- 2. Let X_i be the nearest neighbor of the center of the *l*-th cell.
- 3. Then $\hat{f}_k(x) = f(X_i)$.

Why approximate?

· Direct 1-NN \Rightarrow Voronoi cells.

Why approximate?

- · Direct 1-NN \Rightarrow Voronoi cells.
- · Approximate NN \Rightarrow hypercubes.

Why approximate?

- · Direct 1-NN \Rightarrow Voronoi cells.
- · Approximate NN \Rightarrow hypercubes.

Then

$$g_{k+1}: x \to rac{\hat{f}_k(x) + \hat{r}_k}{M_{k+1}}$$
 is easy to sample from.

Confidence term

$$\hat{r}_{k} = H\left(\max_{u \in \mathcal{C}_{N_{k}}} \min_{i \le N_{k}} \|u - X_{i}\|_{\infty} + \frac{1}{2(\lfloor N_{k}^{\frac{1}{d}} \rfloor + 1)}\right)^{s}.$$

$$g_{k+1} : x \to \frac{\hat{f}_{k}(x) + \hat{r}_{k}}{M_{k+1}}, \text{ where } M_{k+1} \text{ is } \int_{0}^{1} f_{k}(x) dx + \hat{r}_{k}$$

The algorithm: NNARS

The algorithm: NNARS

Assume *n* is large enough.

Upper bound

$$\mathbb{E}_{f}L_{n}(\text{NNARS}) \leq \frac{20}{2^{1-s/d}-1}c_{f}^{-2}(1+\sqrt{2\log 3n})\log^{s/d}(5n)n^{1-s/d} + (25+40+2(10Hc_{f}^{-1})^{d/s})c_{f}^{-1}\log^{2}(n) = O(\log^{2}(n)n^{1-s/d}),$$

Assume *n* is large enough.

Upper bound

$$\begin{split} \mathbb{E}_{f}L_{n}(\text{NNARS}) &\leq \frac{20}{2^{1-s/d}-1}c_{f}^{-2}(1+\sqrt{2\log 3n})\log^{s/d}(5n)n^{1-s/d} \\ &+ (25+40+2(10Hc_{f}^{-1})^{d/s})c_{f}^{-1}\log^{2}(n) \\ &= O(\log^{2}(n)n^{1-s/d}), \end{split}$$

Lower bound

$$\inf_{A \in \mathcal{A}} \sup_{f \in \mathcal{F}_0 \cap \{f: l_f = 1\}} \mathbb{E}_f(L_n(A)) \ge 3^{-1} 2^{-1-3s-2d} 5^{-s/d} n^{1-s/d}$$
$$= O(n^{1-s/d}).$$

Setup

- A forest fire data set with 13 attributes and 517 observations. [Cortez and Morais(2007)]
- Focus on 2 attributes: Duff Moisture Code (DMC) and Drought Code (DC).

Goal: Generate more data from the underlying distribution of the bivariate random variable (DMC,DC).

Experiment

Preprocessing

- Rescale data to $[0, 1]^2$.
- · Created a density using the Epanechnikov kernel:

$$K(u)=\frac{3}{4}(1-u^2)$$

for any $|u| \leq 1$.

Experiment

Preprocessing

- · Rescale data to $[0, 1]^2$.
- · Created a density using the Epanechnikov kernel:

$$K(u)=\frac{3}{4}(1-u^2)$$

for any $|u| \leq 1$.

Results

n=10 ⁵ , 2D	sampling rate
NNARS	$45.7\% \pm 0.1\%$
Pliable RS	$16.0\%\pm0.1\%$
Simple RS	$15.5\% \pm 0.1\%$

Table: Sampling rates for forest fires data [Cortez and Morais(2007)]

- A minimax lower bound was found for the adaptive rejection sampling problem.
- · NNARS is a near-optimal adaptive rejection sampling algorithm.
- · NNARS does well **experimentally**.

J. Achdou, J. C. Lam, A. Carpentier, and G. Blanchard. A minimax near-optimal algorithm for adaptive rejection sampling.

ArXiv e-prints, October 2018.

 P. Cortez and A. J. R. Morais.
 A data mining approach to predict forest fires using meteorological data.
 2007.

Github: jlamweil/NNARS

Questions?