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Context

- Goal: sample independently from a distribution which admits a
density f.

- Evaluations of f are possible but costly.

- Simple rejection sampling would incur a large number of unused
evaluations.

Assumption fis positively lower bounded, with bounded (known)
support, and (s, H)-Holder (0 < s < 1):

x,y € [0, 11, 1f(x) = f)| < HlIx =yl
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Rejection Sampling

Definitions Let

- f be the density you wish to sample from. (target density)
- g be a density that is easy to sample from. (proposal density)
- M be a constant such that Mg > f. (rejection constant)
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Rejection Sampling

Algorithm 1: Rejection Sampling Algorithm

input : M, gst f< Mg

output: samples S

fort=1..,ndo
Sample Y according to g and U according to Uy qj;
If U< s, add Yt0'S;

end

S contains independent samples drawn from f.
The acceptance rate is ;.
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Rejection Sampling
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Figure: Illustration of Rejection Sampling
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Adaptive Rejection Sampling

Let n be the budget. Let S = () be the set of samples from f.

Procedure Ateachstept<n,
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Adaptive Rejection Sampling

Let n be the budget. Let S = () be the set of samples from f.

Procedure Ateachstept<n,

1 {4, (X)), - -, (Xe—1, f(Xe=1)) } are known.

2. g¢, My are chosen.

3. Arejection sampling step is done using (g, M;). This generates X;.
4. If X¢ is not rejected, it is added to S.

Definition of the loss L, =n — #S8 x Vvt < n: f< Mgt}
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Our contributions

1. Nearest Neighbor Adaptive Rejection Sampling (NNARS).
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Our contributions

1. Nearest Neighbor Adaptive Rejection Sampling (NNARS).
2. Minimax lower bound.

3. NNARS is minimax near-optimal.
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Minimax optimality

Let

- A be the set of ARS algorithms.

- JFo be the set of densities: positively lower bounded, with
bounded support, and (s, H)-Hélder (0 < s < 1):

vx,y € [0,1], [f(x) — fy)| < Hlx = yli%

Minimax rate

Ln(A;
inf sup M
Ae'Afe]:o n
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Obtaining an upper bound/Focus on one algorithm

Nearest Neighbor Adaptive Rejection Sampling.
Divide the n steps into K rounds, where each round k contains
double the amount of steps than k — 1.
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Obtaining an upper bound/Focus on one algorithm

Nearest Neighbor Adaptive Rejection Sampling.
Divide the n steps into K rounds, where each round k contains
double the amount of steps than k — 1.

Ateachround 0 < R<K—-1:

- Use an estimator f,, of f based on the previous evaluations.

- Take M09 (k1) = o + 7, where 7, is a confidence bound for

[fk — 1.
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Approximate nearest neighbor estimator f,

At round Kk,

- we know {(X1,f(X1)), ..., Xn,, [(Xn ) }-
- build a uniform grid of ~ Ny, cells with side-length ~ N, ="/,

Let us determine f,(x).
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Approximate nearest neighbor estimator f,

At round Kk,

- we know {(X1,f(X1)), ..., Xn,, [(Xn ) }-

- build a uniform grid of ~ Ny, cells with side-length ~ N, ="/,
Let us determine f,(x).

1. xisin the [-th cell.
2. Let X; be the nearest neighbor of the center of the [-th cell.

3. Then fu(x) = f(X)).
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Approximate nearest neighbor estimator f,

Why approximate?

- Direct 1-NN = Voronoi cells.

10/19



Approximate nearest neighbor estimator f,

Why approximate?

- Direct 1-NN = Voronoi cells.
- Approximate NN = hypercubes.

10/19



Approximate nearest neighbor estimator f,

Why approximate?

- Direct 1-NN = Voronoi cells.
- Approximate NN = hypercubes.

Then

FoX) + 70
Gy 1 X — % is easy to sample from.

k+1
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Approximate nearest neighbor estimator f,

Confidence term

S
N . 1
fr=H| max min ||u = Xjlloo+ ————— | .
U€Cn;, i<Np 2( LNkHJ + ’|)
Fe(x) + T

]
Ghe1 : X — , where My 4is / fr(X)dx + T,
0

Mp
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The algorithm: NNARS

First step of NNARS: uniform sampling
T T

T
—
—
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The algorithm: NNARS

First step of NNARS: building the proposal
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The bounds obtained

Assume n is large enough.

Upper bound

20
ErLn(NNARS) < cf—2(1+\/2|og3n) log®/9(5n)n"—*/4
+ (25440 +2(10Hc;)"*)c;  log?(n)

= O(log”(n)n'~*/9),
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The bounds obtained

Assume n is large enough.

Upper bound

20
ErLn(NNARS) < cf—2(1+\/2|og3n) log®/9(5n)n"—*/4
+ (25440 +2(10Hc;)"*)c;  log?(n)
= O(log”(n)n'~*/9),
Lower bound

inf sup  Ef(Ly(A)) > 37127135 2d5=s/dpi=s/d
A feFonifi=1}

= 0(n'=%/9).
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Setup

- A forest fire data set with 13 attributes and 517 observations.
[Cortez and Morais(2007)]

- Focus on 2 attributes: Duff Moisture Code (DMC) and Drought Code
(DQ).

Goal: Generate more data from the underlying distribution of the
bivariate random variable (DMC,DC).

15/19



Preprocessing

- Rescale data to [0, 1]%.
- Created a density using the Epanechnikov kernel:

K(u) = %(1 — )

forany |u] <1.
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Preprocessing

- Rescale data to [0, 1]%.

- Created a density using the Epanechnikov kernel:
K(w) =5 (1 - )

forany |u] <1.

Results

n=10% 2D | sampling rate

NNARS 45.7% 4+ 0.1%
Pliable RS | 16.0% + 0.1%
Simple RS | 15.5% + 0.1%

Table: Sampling rates for forest fires data [Cortez and Morais(2007)]
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Summary of the contributions

- A minimax lower bound was found for the adaptive rejection
sampling problem.

- NNARS is a near-optimal adaptive rejection sampling algorithm.
- NNARS does well experimentally.
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Questions?



