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Motivation

Context

∙ Goal: sample independently from a distribution which admits a
density f.

∙ Evaluations of f are possible but costly.
∙ Simple rejection sampling would incur a large number of unused
evaluations.

Assumption f is positively lower bounded, with bounded (known)
support, and (s,H)-Hölder (0 < s ≤ 1):

∀x, y ∈ [0, 1]d, |f(x)− f(y)| ≤ H∥x− y∥s∞
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Rejection Sampling

Definitions Let

∙ f be the density you wish to sample from. (target density)
∙ g be a density that is easy to sample from. (proposal density)
∙ M be a constant such that Mg ≥ f. (rejection constant)
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Rejection Sampling

Algorithm 1: Rejection Sampling Algorithm

input : M, g s.t. f ≤ Mg
output: samples S
for t = 1,…,n do

Sample Y according to g and U according to U[0,1];
If U ≤ f(Y)

Mg(Y) , add Y to S ;
end

S contains independent samples drawn from f.
The acceptance rate is 1

M .
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Rejection Sampling

Figure: Illustration of Rejection Sampling
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Adaptive Rejection Sampling

Let n be the budget. Let S = ∅ be the set of samples from f.

Procedure At each step t ≤ n,

1. {(X1, f(X1)), . . . , (Xt−1, f(Xt−1))} are known.
2. gt,Mt are chosen.
3. A rejection sampling step is done using (gt,Mt). This generates Xt.
4. If Xt is not rejected, it is added to S .

Definition of the loss Ln = n−#S × 1{∀t ≤ n : f ≤ Mtgt}.
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Our contributions

1. Nearest Neighbor Adaptive Rejection Sampling (NNARS).

2. Minimax lower bound.
3. NNARS is minimax near-optimal.
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Minimax optimality

Let

∙ A be the set of ARS algorithms.
∙ F0 be the set of densities: positively lower bounded, with
bounded support, and (s,H)-Hölder (0 < s ≤ 1):

∀x, y ∈ [0, 1]d, |f(x)− f(y)| ≤ H∥x− y∥s∞

Minimax rate

φ∗
n =

inf
A∈A

sup
f∈F0

Ln(A; f)
n .
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Obtaining an upper bound/Focus on one algorithm

Nearest Neighbor Adaptive Rejection Sampling.
Divide the n steps into K rounds, where each round k contains
double the amount of steps than k− 1.

At each round 0 ≤ k ≤ K− 1:

∙ Use an estimator f̂k of f based on the previous evaluations.
∙ Take M(k+1)g(k+1) = f̂k + r̂k, where r̂k is a confidence bound for
|̂fk − f|.
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Approximate nearest neighbor estimator f̂k

At round k,

∙ we know {(X1, f(X1)), . . . , (XNk , f(XNk))}.
∙ build a uniform grid of ∼ Nk cells with side-length ∼ Nk−1/d.

Let us determine f̂k(x).

1. x is in the l-th cell.
2. Let Xi be the nearest neighbor of the center of the l-th cell.
3. Then f̂k(x) = f(Xi).
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Approximate nearest neighbor estimator f̂k

Why approximate?

∙ Direct 1-NN⇒ Voronoi cells.

∙ Approximate NN⇒ hypercubes.

Then

gk+1 : x→
f̂k(x) + r̂k
Mk+1

is easy to sample from.
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Approximate nearest neighbor estimator f̂k

Confidence term

r̂k = H
(
max
u∈CNk

min
i≤Nk

∥u− Xi∥∞ +
1

2(⌊Nk
1
d ⌋+ 1)

)s

.

gk+1 : x→
f̂k(x) + r̂k
Mk+1

, where Mk+1is
∫ 1

0
fk(x)dx+ r̂k

11/19



The algorithm: NNARS

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

2

4

6

8

10

First step of NNARS: uniform sampling

f

cf

Samples χ1

12/19



The algorithm: NNARS
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The bounds obtained

Assume n is large enough.

Upper bound

EfLn(NNARS) ≤
20

21−s/d − 1
cf−2(1+

√
2 log 3n) logs/d(5n)n1−s/d

+ (25+ 40+ 2(10Hc−1f )d/s)c−1f log2(n)

= O(log2(n)n1−s/d),

Lower bound

inf
A∈A

sup
f∈F0∩{f:If=1}

Ef(Ln(A)) ≥ 3−12−1−3s−2d5−s/dn1−s/d

= O(n1−s/d).
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Experiment

Setup

∙ A forest fire data set with 13 attributes and 517 observations.
[Cortez and Morais(2007)]

∙ Focus on 2 attributes: Duff Moisture Code (DMC) and Drought Code
(DC).

Goal: Generate more data from the underlying distribution of the
bivariate random variable (DMC,DC).
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Experiment

Preprocessing

∙ Rescale data to [0, 1]2.
∙ Created a density using the Epanechnikov kernel:

K(u) = 3
4 (1− u2)

for any |u| ≤ 1.

Results

n=105, 2D sampling rate
NNARS 45.7%± 0.1%

Pliable RS 16.0%± 0.1%
Simple RS 15.5%± 0.1%

Table: Sampling rates for forest fires data [Cortez and Morais(2007)]
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Summary of the contributions

∙ A minimax lower bound was found for the adaptive rejection
sampling problem.

∙ NNARS is a near-optimal adaptive rejection sampling algorithm.
∙ NNARS does well experimentally.
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Questions?
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