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SECOND PRICE AUCTIONS



SECOND PRICE AUCTIONS

Second Price auctions used to be the main mechanism for Real Time
Bidding. The mechanism proceeds as follows:

∙ An item (an ad placement linked to a user) is auctioned.
∙ Bidders place their bids for this specific item.
∙ The highest bidder wins the auction. She pays the second highest
bid and observes the value of the item (possibly the occurrence of
a click or a purchase).
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A NICE PROPERTY OF SECOND PRICE AUCTIONS

How much should you bid in a second price auction, knowing your
value ?
Notation: v := known value, m := max of the adversaries’ bids.

Intuition: Bidding on the right side of m ensures the maximal utility.

If v < m, the bidder needs to lose, otherwise she pays more than she wins.
Losing means bidding less than m.
If v > m, the bidder needs to win. Any bid higher than m results in the same
payment m, so that winning ensures the optimal utility whatever the bid.
Winning means bidding more than m.

Theorem
Second price auctions are truthful.
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STOCHASTIC SETTING

Setting For t in 1, . . . , T,

1. the bidder submits her bid Bt for the item that is of unknown value
Vt. The other players submit their bids, the maximum of which is
called Mt.

2. If Mt ≤ Bt (which includes the case of ties), the bidder observes
and receives Vt, and pays Mt. Otherwise, the bidder loses the
auction and does not observe Vt.

Further assumptions {Vt}t≥1 are iid random variables in [0,1]; their
expectation is denoted by E(Vt) = v.
The maximal bids {Mt}t≥1 are iid random variables in [0, 1]; their cdf
is denoted by F.
Same setting as in [Weed et al.(2016)Weed, Perchet, and Rigollet].
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EVALUATION

Regret

RT := max
b∈[0,1]

T∑
t=1

E[Ut(b)]−
T∑
t=1

E[Ut(Bt)].

where the utility is Ut(b) = (Vt −Mt)1{b ≥ Mt}
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A FEW REMARKS

Remarks on the setting

∙ The stochastic assumption is arguably a reasonable assumption
for RTB auctions.

∙ Reserve prices are not considered, because the setting of a reserve
price r is equivalent to adding a bidder who constantly bids r .

∙ Morally, Vt ∼ Ber(v) where v is small
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SOME INTUITION ON THE PROBLEM

A structured bandit problem.
Exploration/Exploitation Trade-Off where Exploitation consists in

bidding close to v and Exploitation consists in bidding high (bidding
1 means observing everything).
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UCB-TYPE ALGORITHMS



UCB ALGORITHMS

UCB algorithms are a natural solution for balancing exploration/
exploitation.

Bt = UCBt(γ) =



min
(
1, V̄t−1 +

√
γ log(t)
2Nt−1

)
for UCBID [Weed et al.(2016)Weed, Perchet, and Rigollet]
inf

{
x ∈ (V̄t−1, 1] : kl(V̄t−1, x) = γ log(t)

Nt−1

}
for klUCBID

min

(
1, V̄t−1 +

√
2W̄t−1 log(3tγ)

Nt−1
+ 3 log(3tγ)

Nt−1

)
for BernsteinUCBID ,
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GUARANTEES ON UCBID

Locally bounded density. There exists ∆ > 0 such that F admits a
density f bounded on [v, v+∆], i.e., there exists β > 0, such that
∀x ∈ [v, v+∆], f(x) < β.

Theorem
If F(v) > 0, then the regret of the UCBID algorithm with parameter
γ > 1 is bounded as follows:

RT ≤
2βγ
F(v)

log2 T+ O(log T).

Remark : 1

F(v)
∼ average time between two successive observations

under the optimal policy
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ALGORITHMS WITH TIGHTER CONFIDENCE INTERVALS

Theorem
If F(v) ̸= 0 , the kl-UCBID algorithm with parameter γ > 1 yields the
following bound on the regret:

RT ≤ 8γ v(1− v) β

F(v)
log2(T)

(
1+ o(1)

)
.

whereas the Bernstein-UCBID algorithm with parameter γ > 1 yields
the following bound on the regret:

RT ≤ 8γ w β

F(v)
log2(T) + O(log T),

where w is the variance.
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WORST CASE UPPER BOUND

Theorem
Without further assumption, the maximal regrets of UCBID and
klUCBID are
O(

√
T log T). If F has a density that is bounded from below and above

by non negative constants, the maximal regret of UCBID remains of
the same order, while it is reduced to O(T 1

3 log2 T) for BernsteinUCBID
and to O(log2 T) for klUCBID.
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SIMULATIONS

Figure: Regret plots of three UCB algorithms for values Vt ∼ Ber(0.2) and
uniform Mt 13/32



SIMULATIONS

Figure: Regret plots of three UCB algorithms for Vt supported on
{0.195, 0.205} and uniform Mt 14/32



SIMULATIONS

Figure: Regret at time 5000 of studied policies for uniform Mt and
Bernoulli-distributed Vt of varying mean v. 15/32



PARAMETER-DEPENDENT LOWER BOUND



LOWER BOUND

Theorem
We consider all environments where Vt follows a Bernoulli
distribution with expectation v and F admits a density f that is
bounded from below and above, with f(b) ≥ β > 0. If a strategy is
such that, for all such environments, RT ≤ O(Ta), for all a > 0, and if
there exists γ > 0 such that for all such environments,
P(Bt < v) < t−γ , then this strategy must satisfy:

lim inf
T→∞

RT
log T ≥ β

v(1− v)
16F(v) . (1)

The assumption is satisfied by all studied UCB algorithms
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INTUITION BEHIND THE PROOF OF THE LOWER BOUND

Originality : we consider a different alternative for each of the T time
steps.

We fix a model in which all (Vs)Ts=1 follow a Bernoulli distribution
with expectation v, and the bids (Ms)

T
s=1 are distributed according to

F. At each time t, we consider the alternative model where the values
(Vs)Ts=1 follow a Bernoulli distribution with expectation
v′t = v+

√
v(1−v)
F(v)t , and the bids Mt are distributed according to F.
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DIGRESSION

Lemma
If F admits a density f, which satisfies

∃ β, ∀x ∈ [0, 1], β ≤ f(x);

Then,
β

2

T∑
t=1

E[(Bt − v)2] ≤ RT.
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PROOF OF THE LEMMA

The utility writes

E[Ut(b)] =
∫ b

0
(v−m)f(m)dm

= (v− b)F(b) +
∫ b

0
F(m)dm,

The instantaneous regret writes :

E[rt(b)] = E[Ut(v)]− E[Ut(b)]

=

∫ v

b
F(m)dm− (v− b)F(b)

=

∫ v

b
(F(m)− F(b))dm

=

∫ v

b

∫ m

b
f(u)dudm ≥ β(v− b)2
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INTUITION BEHIND THE PROOF OF THE LOWER BOUND

We fix a time step t. Thanks to Le Cam’s method,

Pv
(
Bt >

v+ v′t
2

)
+ Pv′t

(
Bt <

v+ v′t
2

)
≥ 1−

√
1
2KL(P

It
v ,PItv′t ).

thanks to the non-underbidding assumption.
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INTUITION BEHIND THE PROOF OF THE LOWER BOUND

We have proved

Pv
(
Bt >

v+ v′t
2

)
≥ 1−

√√√√√ 1
2 kl(v, v

′
t)︸ ︷︷ ︸

≲ 1+ϵ
2F(v)t

(1+ ϵ)F(v)t− o(t−γ).

Now, Ev[(Bt − v)2] ≥ (v− v+v′t
2 )2Pv

(
Bt > v+v′t

2

)
This, together with the development of kl(v, v′t) yields

Ev[(Bt − v)2] ≥ v(1− v)
4F(v)t

(
1− 1

2 (1+ ϵ)− 1/tγ
)
,

for t large enough.

lim inf
T→∞

∑T
t=1 Ev[(Bt − v)2]

log T ≥ v(1− v)
8F(v) .
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SIMPLER, NON OVERBIDDING ALGORITHMS



ETG STRATEGIES

Explore Then Greedy

∙ Strategies inspired by Explore Then Commit’s strategies ETG
strategies.

∙ In the exploration phase, the maximal value of the bid (Bt = 1) is
chosen to force observation. After a well-chosen stopping time,
the bidder chooses either to abandon the bids (choosing Bt = 0),
or to continue with the running average of observed values
(greedy phase).
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MOTIVATIONS

∙ Practical motivation: In the context of digital advertising,
simplicity is critical.

∙ Other practical motivation: ETG strategies are easy to explain and
similar to truely implemented strategies.

∙ Theoretical motivation: The lower bound only works for
overbidding strategies : can non-overbidding strategies work ?
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ETGSTOP

We propose one instance of ETG, that we call ETGstop, defined by the
following choice of stopping times τ1 and τ0:

τ1 := inf

{
t ∈ [1, T] : exp

(
− tLt8

)
≤ 1
T2

}
, τ0 = inf

{
t ∈ [1, T] : Ut ≤

1
T 1
3

}
(2)

where we denote by Lt = min{v ∈ [0, V̄t[: exp
(
−tkl(V̄t, v)

)
≤ 1/T2} and

by Ut = max{v ∈ [V̄t, 1[: exp(−tkl(V̄t, v)) ≥ 1/T2} the kl-lower and
upper confidence bound for the confidence level 1/T2.
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IDEA BEHIND THE CHOICE OF STOPPING TIME

Idea : We want to ensure a minimal ratio of won auctions in this
second phase.

This choice of stopping time allows to guarantee that with high
probability, if τ1 is smaller than τ0, all bids will be larger than v

2 in the
second phase. Indeed, we prove that for all n,
P(V̄(n) ≤ v

2 ) ≤ exp(−nkl(v, v2 )) ≤ exp(−nv
8 ), where V̄(n) denotes the

empirical mean of the first n observed values. With high probability,
exp(−nv

8 ) ≤ exp(−nLτ
8 ) ≤ 1

T2 , for all n > τ , since Lt is a lower
confidence bound of v. Therefore, the probability that there exists a
time step in the second phase for which the average of the observed
values is less than v/2 is small.
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GUARANTEES

Theorem
If F admits a density f, that satisfies
∃ β, β > 0,∀x ∈ [0, 1], β ≤ f(x) ≤ β, then the regret of ETGstop
satisfies :

max
v∈[0,1]

RT(v) ≤ O(T 1
3 log2 T),

and if v > 1
T
1
3
,

then RT(v) ≤ 7+ 64 log(T) + 60T−1/2
v +

4
F(v/2) + β

log2 T
F(v/2) .
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THE LIMITATION OF ETG STRATEGIES

Theorem
If F admits a density lower-bounded by β > 0, then the regret of any
ETG strategy satisfies

max
v∈[0,1]

RT(v) ≥
β

4

(
T 1
3 − 1

)
. (3)
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SIMULATIONS



SIMULATIONS

Figure: Comparison with ETGstop and other algorithms, for Vt ∼ Ber(0.3) and
uniform Mt. 31/32
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